finished ex2 week 3

This commit is contained in:
“Spekulaas” 2023-09-15 10:03:04 +02:00
parent 23af09eeca
commit 9e8e49cfaf
2 changed files with 113 additions and 0 deletions

View File

@ -0,0 +1,66 @@
#!/usr/bin/env python3
"""Asymmetric Cryptography -> Digital Signature: Exercise 1
The goal of this exercise is to learn how to sign and verify messages using asymmetric keys.
In this implementation the passed message as an argument is a string converted to a byte object.
When signing a message the RSA sign-function requires a specific hash like SHA256, and padding such as PSS.
Be aware that verification must use the same algorithms to correctly verify the signature.
Your task is to:
* locate the TODOs in this file
* complete the missing part from the code
* run the test of this exercise located in same folder.
To test run 'Signature_t.py' in your command line
Notes:
* do not change class structure or method signature to not break unit tests
* visit this url for more information on this topic:
https://cryptography.io/en/latest/hazmat/primitives/asymmetric/rsa/
"""
from cryptography.exceptions import *
from cryptography.hazmat.primitives.asymmetric import rsa
from cryptography.hazmat.primitives import hashes
from cryptography.hazmat.primitives.asymmetric import padding
from cryptography.hazmat.primitives import serialization
# TODO 1: Generate first a private key, then a public key. As a result return both values.
# Make sure you generate the keys in the correct order.
# Use recommended algorithms values where possible
def generate_keys():
private_key = rsa.generate_private_key(public_exponent=65537,key_size=2048)
public_key = private_key.public_key()
return private_key, public_key
# TODO 2: Sign a passed message using the passed private key
# Signing and verifying algorithms must be the same
def sign(message, private):
sig = private.sign(
message,
padding.PSS(
mgf=padding.MGF1(hashes.SHA256()),
salt_length=padding.PSS.MAX_LENGTH
),
hashes.SHA256()
)
return sig
# TODO 3: Verify a signature for a message with the passed public key
# Signing and verifying algorithms values must be the same
# Make sure to handle exception properly if verification fails
def verify(message, sig, public):
try:
public.verify(
sig,
message,
padding.PSS(
mgf=padding.MGF1(hashes.SHA256()),
salt_length=padding.PSS.MAX_LENGTH
),
hashes.SHA256()
)
return True
except:
return False

View File

@ -0,0 +1,47 @@
#!/usr/bin/env python3
"""
This test case will verify if the provided solution by a student for Signature.py is correct.
"""
from Signature import *
if __name__ == '__main__':
# Generate asymmetric keys for two users
alex_prv, alex_pbc = generate_keys()
mike_prv, mike_pbc = generate_keys()
alex_message = b'pay 10 euro to bob'
# Verification of a signature using public key:
# If Alex sign it:
alex_signature = sign(alex_message, alex_prv)
verified = verify(alex_message, alex_signature, alex_pbc)
if verified:
print('Success: Valid signature is verified.')
else:
print('Fail: Valid signature is not verified.')
# If Mike sign it:
f_signature = sign(alex_message, mike_prv)
verified = verify(alex_message, f_signature, alex_pbc)
if verified:
print('Fail: Invalid signature is verified.')
else:
print('Success: Invalid signature is not verified.')
# Check originality of message using public key:
received_message = b'pay 10 euro to bob'
correct = verify(received_message, alex_signature, alex_pbc)
if correct:
print('Success: The received message is validated as original.')
else:
print('Fail: The received message is validated as tampered.')
t_message = b'pay 100 euro to bob'
correct = verify(t_message, alex_signature, alex_pbc)
if correct:
print('Fail: The tampered Message is not validated as original.')
else:
print('Success: The tampered Message is correctly detected.')