School/excersise.ts
2023-04-12 23:03:51 +02:00

480 lines
15 KiB
TypeScript

type FunType<input, output> = {
(inputValue: input): output;
next: <nextOuput>(nextFunction: FunType<output, nextOuput>) => FunType<input, nextOuput>;
repeat: (this: FunType<input, input>, count: number) => FunType<input, input>;
repeatUntil: (this: FunType<input, input>, condition: FunType<input, boolean>) => FunType<input, input>;
}
const Fun = <input, output>(inputLamba: (_: input) => output): FunType<input, output> => {
const func = inputLamba as FunType<input, output>;
func.next = function<nextOutput>(nextFunction: FunType<output, nextOutput>): FunType<input, nextOutput> {
return Fun(inputValue => nextFunction(inputLamba(inputValue)));
}
func.repeat = function(this: FunType<input, input>, count: number): FunType<input, input> {
if (count == 0) {
return Fun((x: input) => x);
}
return this.next(this.repeat(count - 1));
}
func.repeatUntil = function(this: FunType<input, input>, condition: FunType<input, boolean>): FunType<input, input> {
return Fun((x: input) => {
if (condition(x)) {
return x;
}
console.log(x);
return this.next(this.repeatUntil(condition))(x);
})
// Shorthand
// return Fun((x: input) => condition(x) ? x : this.next(this.repeatUntil(condition))(x));
}
return func;
}
//
// Some FunType lamdas
//
const isPositive: FunType<number, boolean> = Fun((x: number) => x > 0);
const isEven: FunType<number, boolean> = Fun((x: number) => x % 2 == 0);
const incr: FunType<number, number> = Fun((x: number) => x + 1);
const double: FunType<number, number> = Fun((x: number) => x * 2);
const decr: FunType<number, number> = Fun((x: number) => x - 1);
const convert: FunType<number, string> = Fun((x: number) => String(x));
const exclaim: FunType<string, string> = Fun((x: string) => {
let y = x + "!";
return y;
});
const question: FunType<string, string> = Fun((x: string) => {
let y = x + "?";
return y;
});
const saveSqrt = Fun((a: number) => a > 0 ? Math.sqrt(a) : Math.abs(Math.sqrt(a)));
let xxx = incr.next(convert) (4)
//
// Generic id functions
//
// Id functions do basically nothing but initialize a base where we can work from (initializing a pipeline for example)
// Eg. Id functions are the base of all other functions
const id: <a>() => FunType<a, a> = () => Fun(x => x);
// function id<a>(): FunType<a, a> {
// return Fun(_ => _);
// }
// Example usage 1
let exampleId = id<number>().next(incr).next(incr)(0) // -> result would be 2
// |
// Define type here
// Id functions but for a specific type (Non generic)
type Unit = {};
const idNum: FunType<Unit, number> = Fun(_ => 0);
const idString: FunType<Unit, string> = Fun(_ => "");
// |
// Define type here
// Example usage 2
let exampleId2 = idNum.next(incr).next(incr)(0)
//
// Countainers / Functors
//
// A functor is a container that is mappable
// Aka: We can run map functions on the containers itself to perform some kind of data update.
type Countainer<content> = {
content: content; // Content
counter: number; // For Example: amount of times object has been changed or mapped.
}
// Increments the value of counter with 1
function incrCountainer<content>(countainer: Countainer<content>): Countainer<content> {
return {
content: countainer.content,
counter: countainer.counter + 1
};
}
// Applies transformer lamda to content of countainer to potentionally map value to other type: content -> newContent
function mapCountainerNoFun<content, newContent>(countainer: Countainer<content>, transformer: FunType<content, newContent>): Countainer<newContent> {
return {
counter: countainer.counter + 1,
content: transformer(countainer.content)
}
}
// Applies transformer lamda to each element content of array to potentionally map value to other type: content -> newContent
function mapArray<content, newContent>(transformer: FunType<content, newContent>): FunType<Array<content>, Array<newContent>> {
return Fun((array: Array<content>) => array.map(transformer));
}
// Applies transformer lamda to content of countainer to potentionally map value to other type: content -> newContent
// !! But is wrapped in the FunType so we can use this in a pipeline !!
function mapCountainer<content, newContent>(transformer: FunType<content, newContent>): FunType<Countainer<content>, Countainer<newContent>> {
return Fun(c => {
return {
counter: c.counter + 1,
content: transformer(c.content)
}
})
}
type Message = {
username: string;
likes: number;
message: string;
}
// Some pipeline functions for Message type
const setUsername = (newUsername: string) => Fun<Message, Message>(c => ({ username: newUsername, likes: c.likes, message: c.message }));
const incrLikes = () => Fun<Message, Message>(c => ({ username: c.username, likes: c.likes + 1, message: c.message }));
// We could also write these functions like this
function setMessage (msg: string): FunType<Message, Message> {
return Fun(c => {
return {
username: c.username,
likes: c.likes,
message: msg
}
})
}
// Countainer where content is of Message Type
let messageCountainer: Countainer<Message> = {
counter: 0,
content: {
username: "",
likes: 0,
message: ""
}
}
// Pipeline usage example with countainer and message
// Using mapCountainer
const messagePipeline1 = mapCountainer(
setUsername("Test")
.next(setMessage("This is a message"))
.next(incrLikes())
.next(incrLikes())
)
const messagePipeline2 = mapCountainer(
setUsername("Test2")
.next(setMessage("This is a new and more improved message message"))
.next(incrLikes())
.next(incrLikes())
.next(incrLikes())
)
const message1 = messagePipeline1(messageCountainer);
const message2 = messagePipeline2(messageCountainer);
//console.log(message1);
// Result: {
// counter: 1,
// content: { username: 'Test', likes: 2, message: 'This is a message' }
// }
// This function will increase all the likes by 1 in a array of Countainers where its type is Message
// We use the MapArray function for this operation
const increaseAllLikes: FunType<Array<Countainer<Message>>, Array<Countainer<Message>>> = mapArray(mapCountainer(incrLikes()));
// Create array
const messages: Array<Countainer<Message>> = [message1, message2];
// console.log(increaseAllLikes(messages));
// Result: [
// {
// counter: 2,
// content: { username: 'Test', likes: 3, message: 'This is a message' }
// },
// {
// counter: 2,
// content: {
// username: 'Test2',
// likes: 4,
// message: 'This is a new and more improved message message'
// }
// }
// ]
// Some more examples of array mapping
// Basic increment
// console.log(
// mapArray(incr)([1, 2, 3, 4])
//)
// Result: [ 2, 3, 4, 5 ]
// Increment, double and decrement in pipeline
// console.log(
// mapArray(incr.next(double).next(decr))([1, 2, 3, 4])
// )
// Result: [ 3, 5, 7, 9 ]
// Increment, check if even.
// Here we also perform a mapping function that will change the type of content
// console.log(
// mapArray(incr.next(isEven))([1, 2, 3, 4])
// )
// Result: [ true, false, true, false ]
//
// Monoid / Monoidal structure / Monoids
//
// Monoids are datatypes (structures) that supports a given mathematical operation plus some given values
// Examples:
// + (Operator in numerical context)
// 1 + 2 == 2 + 1
// (a + b) * c == c * (b + a)
// a + 0 == 0 + a == a
// * (Operator in numerical context)
// (a * b) * c == a * (b * c)
// a * 1 == 1 * a == a
// + (Operator in string context)
// (a + b) + c == a + (b + c)
// a + "" == "" + a == a
// Practical examples with arrays
const numArray1: Array<number> = [1, 2, 3];
const numArray2: Array<number> = [2, 3, 4];
const numArray3: Array<number> = [5, 6, 7];
const numArray4: Array<number> = [];
const resultNumArr1 = numArray1.concat(numArray2.concat(numArray3)); // -> [1, 2, 3, 2, 3, 4, 5, 6, 7]
const resultNumArr2 = numArray1.concat(numArray2).concat(numArray3); // -> [1, 2, 3, 2, 3, 4, 5, 6, 7]
const resultNumArr3 = (numArray1.concat(numArray2)).concat(numArray3); // -> [1, 2, 3, 2, 3, 4, 5, 6, 7]
// Therefore: resultNumArr1 == resultNumArr2 == resultNumArr31
const resultNumArr4 = numArray4.concat(numArray1); // -> [1, 2, 3]
const resultNumArr5 = numArray1.concat(numArray4); // -> [1, 2, 3]
// Therefore: resultNumArr4 == resultNumArr5
// This type of reasoning also applies to (monoidal) functions!!
// Here monoids come into play
let monoidTest1 = id<number>().next(incr).next(incr).next(incr) (0);
let monoidTest2 = id<number>().next(incr.next(incr).next(incr)) (0);
let monoidTest3 = id<number>().next(incr.next(incr)).next(incr) (0);
// Therefore: monoidTest1 == monoidTest2 == monoidTest3
let monoidTest4 = incr.next(id<number>()) (0);
let monoidTest5 = id<number>().next(incr) (0);
// Therefore: monoidTest4 == monoidTest5
// A monoido or triple is
// A type T
// An operator + : [T, T] => T
// An element z : T
//
// Such that:
// (a + b) + c == a + (b + c) <--- associative law
// a + z == z + a == a <--- identity law
//
// Monads are different than monoids!
// Monads (NOT Monoid / Monodial, etc) are Functors and Monoids combined!
//
//
// Pairs
//
type Pair<a, b> = {
a: a,
b: b
};
const pairA = <a, b>(): FunType<Pair<a, b>, a> => Fun(c => c.a);
const pairB = <a, b>(): FunType<Pair<a, b>, b> => Fun(c => c.b);
const mapPair = <a, b, c, d>(f1: FunType<a, c>, f2: FunType<b, d>): FunType<Pair<a, b>, Pair<c, d>> => Fun(c => {
return {
a: f1(c.a),
b: f2(c.b),
}
})
//
// Options
//
type Option<a> = ({ kind: "empty" } | { kind: "full", content: a }) & {
then <b>(cont: (_: a) => Option<b>): Option<b>
};
const emptyOption = <a>(): Option<a> => ({
kind: "empty",
then: function<b>(this: Option<a>, cont: (_: a) => Option<b>) { return bindOption(this, Fun(cont)) }
});
const fullOption = <a>(input: a): Option<a> => ({
kind: "full",
content: input,
then: function<b>(this: Option<a>, cont: (_: a) => Option<b>) { return bindOption(this, Fun(cont)) }
});
class OptionFunctors {
static join = <a>(nestedOption: Option<Option<a>>): Option<a> => {
if (nestedOption.kind == "empty") return emptyOption<a>();
if (nestedOption.content.kind == "empty") return emptyOption<a>();
return fullOption<a>(nestedOption.content.content);
}
static funJoin = <a>(): FunType<Option<Option<a>>, Option<a>> => {
return Fun((nestedOption: Option<Option<a>>) => {
if (nestedOption.kind == "empty") return emptyOption<a>();
if (nestedOption.content.kind == "empty") return emptyOption<a>();
return fullOption<a>(nestedOption.content.content);
})
}
static unit = <a>(unstructuredValue: a) => {
return fullOption(unstructuredValue);
}
static zero = <a>(): Option<a> => {
return emptyOption<a>();
}
}
const mapOption = <a, b>(f: FunType<a, b>): FunType<Option<a>, Option<b>> => {
return Fun((option: Option<a>) => {
if (option.kind == "empty") {
return emptyOption<b>();
}
return fullOption(f(option.content));
})
}
const bindOption = <a, b>(source: Option<a>, cont: FunType<a, Option<b>>): Option<b> => {
return mapOption(cont).next(OptionFunctors.funJoin()) (source);
}
const saveDivide = (x: Option<number>, y: Option<number>): Option<number> => {
return x.then((xValue) => {
return y.then((yValue) => {
if (yValue == 0) {
return emptyOption<number>();
}
return fullOption(xValue / yValue);
})
})
}
// let exmp = saveDivide(fullOption(3), saveDivide(fullOption(3), fullOption(0)));
//
// Either
//
type Either<a, b> = {
kind: "left",
value: a
} | {
kind: "right",
value: b
}
const eitherL = <a, b>(): FunType<a, Either<a, b>> => Fun((input: a) => ({ kind: "left", value: input }));
const eitherR = <a, b>(): FunType<b, Either<a, b>> => Fun((input: b) => ({ kind: "right", value: input }));
const mapEither = <a1, b1, a2, b2>(fL: FunType<a1, a2>, fR: FunType<b1, b2>): FunType<Either<a1, b1>, Either<a2, b2>> => {
return Fun((input: Either<a1, b1>) => {
if (input.kind === "left") {
return fL.next(eitherL<a2, b2>())(input.value);
}
return fR.next(eitherR<a2, b2>())(input.value);
})
}
type MyException = {
msg: string;
}
interface ServerConnection {
ip: string; //ip address
hello: string; //hello message
}
const servers: Array<ServerConnection> = [
{ ip: "11.11.11.11", hello: "Connected to EU server!" },
{ ip: "22.22.22.22", hello: "Connected to Asia Server" },
{ ip: "33.33.33.33", hello: "Connected to US Server" },
]
const connect = (): FunType<string, Either<ServerConnection, MyException>> => {
return Fun((ip: string) => {
const prob: number = Math.random();
if (prob < 0.8) {
return eitherL<ServerConnection, MyException>()({
ip: "11",
hello: "2323"
});
} else {
return eitherR<ServerConnection, MyException>()({
msg: "Could not connect to server"
});
}
});
}
//
// Process
//
type Process<s, a> = FunType<s, [s, a]>;
const mapProcess = <s, a, b>(f: FunType<a, b>): FunType<Process<s, a>, Process<s, b>> => {
return Fun((initialprocess) => {
return Fun((initialState) => {
const [newState, result] = initialprocess(initialState);
const mappedResult = f(result);
return [newState, mappedResult];
})
})
}
class ProcessFunctors {
static join = <S, T>(outerProcess: Process<S, Process<S, T>>): Process<S, T> => {
return Fun((outerState) => {
const [innerState, innerProcess] = outerProcess(outerState);
return innerProcess(innerState);
})
}
// static funJoin = <a>(): FunType<Option<Option<a>>, Option<a>> => {
// return Fun((nestedOption: Option<Option<a>>) => {
// if (nestedOption.kind == "empty") return emptyOption<a>();
// if (nestedOption.content.kind == "empty") return emptyOption<a>();
// return fullOption<a>(nestedOption.content.content);
// })
// }
static unit = <S, T>(unstructuredValue: T): Process<S, T> => {
return Fun((state) => {
return [state, unstructuredValue];
})
}
}
type ProcessWithError<s, a> = FunType<s, Option<[s, a]>>;